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PhyloPars methodology 

Introduction 

PhyloPars reconstructs missing feature values of the nodes (species or strains) of a phylogeny, 

using a limited number of observations. The main idea behind the method is that the closer 

related a node is, the more it will tell us about a missing feature value. Specifically, feature 

values are assumed to change through genetic drift only, with the rate of change (mutation) 

being constant for the entire phylogeny. Evolutionary changes in the value of different 

features are allowed to be correlated, such as would be the case for the change in length and 

surface area, for instance. Additionally, the model allows for phenotypic variability of 

features: the fact that an observation or measurement is not necessarily the exact feature value 

of the representative node. This may be the case when there exists within-species or within-

strain variation of the feature value, or when observed values are affected by measurement 

error. 

The phylogenetic model used is the wide-spread “Brownian motion” model of evolution (1,2), 

formulated for multiple features (3-5). Phenotypic variability is added as an additional layer 

of variability between the species and sample level. The level of phenotypic variability is 

taken be feature-specific and constant across the phylogeny; its value is estimated from the 

observations (5). This contrasts with the approach by Ives et al (6), who allow for a variable 

(node-specific), pre-specified phenotypic variability. Conceptually the PhyloPars 

methodology is nearest to that employed by Felsenstein (5), but it differs in two aspects. First, 

PhyloPars assumes different observations on a single species to be independent, which 

formally implies that phenotypic correlations equal zero. Second, the model is extended with 

the facility of handling missing data: values in the feature matrix may be sampled 0, 1 or more 

times. This contrasts with the approach by Felsenstein, which requires for any sampled 

individual or population that all feature values are measured. 

Broadly, there exist three approaches to mathematically develop and analyze the conceptual 

model introduced in the previous paragraph: Phylogenetically Independent Contrasts (PIC) 

(3,5), Generalized Least Squares (GLS) (7-9), and the Phylogenetic Mixed Model (PMM) 

(4,10).  All build upon the same assumptions and tackle very similar conceptual problems. It 

is therefore not surprising that they can be shown to be closely related, and to deliver identical 

results for some models (5,10-12). Perhaps the main difference between the methods lies in 

the questions that they typically address: both PIC and GLS are often used directly to obtain 

either estimates of ancestral feature values (13,14) or to perform univariate phylogenetic 

regressions (12). Accordingly, mathematical theory and analytical formulae have been 

developed especially for these purposes. The PMM on the other hand aims to first 

(numerically) reconstruct the parameters of the full evolutionary model (specifically, the 

phylogenetic covariance matrix), which can then serve a variety of purposes including 

ancestral state reconstruction, univariate and multivariate phylogenetic regression analysis, 

and phylogenetic principal component analysis. This led Housworth et al. (10) to suggest that 

the PMM can be more informative than PIC and GLS-based counterparts. However, it should 

be stressed that the difference between the methods lies primarily in the typical application of 
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the methods, and not in their base assumptions and model formulation. For instance, 

Felsenstein (5) uses a PIC-based method to obtain all phylogenetic and phenotypic parameters 

of the evolutionary model. 

In a sense, PhyloPars incorporates elements from both GLS- as well as PIC-based methods. 

First, the complete normal multivariate model is formulated for multiple nodes and multiple 

traits, describing the likelihood of observing all sampled variables. This would be the starting 

point for a GLS analysis. Second, contrasts (but not independent contrasts) are introduced to 

eliminate the phylogenetic mean of the features from the problem, not unlike the approach 

followed by Grafen (7). At this point, however, the inclusion of phenotypic variability has 

made analytical reconstruction of the model parameters impossible – commonly used 

analytical expressions for the value and confidence intervals of ancestral states and 

phylogenetic regression coefficients do not apply. As in comparable studies (5,6,10), 

numerical routines must be used to identify the parameters that maximize the likelihood. 

Input 

Let us start with a completely known phylogeny that contains a total of 𝑀 nodes, and a 

limited set of observations on 𝑁 features of a subset of nodes. Multiple observations on a 

single node are assumed to be independent (cf. 5). The whole set of observations is assumed 

to incomplete and may contain duplicates: any element of the 𝑀 × 𝑁 feature matrix may be 

sampled 0, 1 or more times. As the number of observations can differ between features, we 

define for each feature 𝑖 its distinct set of observations as vector 𝐲𝑖 =  𝑦𝑖1,…𝑦𝑖𝐾𝑖
 
𝑇
. The 

indices of the node to which each observation pertains will be denoted by corresponding 

vector 𝐦𝑖 =  𝑚𝑖1,…𝑚𝑖𝐾𝑖
 
𝑇
. The ordering of observations is irrelevant: values in 𝐦𝑖  do not 

need to increase monotonously. Also, as multiple observations on the value of a specific 

feature for a single node may be available, each 𝐦𝑖  may contain duplicates. 

Phylogenetic variability: genetic drift 

If the value of features changes through genetic drift only, features can be considered to 

perform a random walk in evolutionary time. This corresponds to the Brownian motion model 

for evolution of continuous features (1). This is by no means the only model of feature 

evolution (15,16), but it is perhaps the simplest model possible, and it mathematical 

consequences can be motivated independently on first-principle statistical grounds (7,12,17). 

The Brownian motion model specifies that if feature values  𝑥1,…𝑥𝑁 
𝑇 are known, the 

probability distribution of the feature values at time interval 𝑡 later is described by a 

multivariate normal distribution with mean  𝑥1,…𝑥𝑁 
𝑇 and covariances 𝑎𝑖𝑗 𝑡, with 𝑎𝑖𝑗  defined 

as the covariance of evolutionary change between features 𝑖 and 𝑗 per unit time (i.e., branch 

length). Following Felsenstein (5), we will refer to these as phylogenetic covariances. These 

covariances are easily transformed into phylogenetic correlations and phylogenetic regression 

slopes. Since the intercept of phylogenetic regressions is identical to the feature value of the 

root node (12), which is reconstructed along with the values of all other nodes at the final step 

in the analysis, the present method also may be used to perform phylogenetic regression 

analyses. 
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Let us now consider the (rooted) phylogeny with the true value (cf., the observed value) of 

feature 𝑖 for node 𝑘 denoted by 𝑥𝑖𝑘 ; 𝑘 = 0 will be used to denote the root of the phylogeny. 

The feature values of any given node have been determined by the random walk that started 

from the root node. Lets us denote the set of branch segments that describes the evolutionary 

path from the root to a node 𝑘 as 𝑃𝑘 , and the sum of the lengths of the segments in such a set 

as 𝑙 𝑃𝑘 . For this node 𝑘 the feature values can now be described by a multivariate normal 

distribution with the mean equal to the feature values of the root node  𝑥10 ,…𝑥𝑁0 
𝑇 and 

covariances equal to 𝑎𝑖𝑗 𝑙 𝑃𝑘 . It is not hard to see that the feature values of the different 

nodes must be correlated if the nodes’ evolutionary paths from the root node (partially) 

overlap: these nodes have shared all changes in feature values from the root till their last 

common ancestor. This implies that the covariance between a feature value 𝑥𝑖𝑘  and any other 

feature value 𝑥𝑗𝑙  is given by Cov 𝑥𝑖𝑘 , 𝑥𝑗𝑙  = 𝑎𝑖𝑗𝑇𝑘𝑙 , with 𝑇𝑘𝑙 = 𝑙 𝑃𝑘 ∩ 𝑃𝑙  simply equaling the 

length of the path from the root till the last common ancestor of both nodes. 

Phenotypic variability: intraspecific variation and measurement error 

In most cases, observations on the feature value of a given node will be subject to additional 

variability: different individuals of a node may have different feature values (intraspecific 

variability), and measurements of the feature values may be imperfect (measurement error). 

Following Felsenstein (5), we will refer to these as sources as phenotypic variability. We will 

assume that the uncertainty due to each phenotypic source of variation can be described by a 

normal distribution centered at the true feature value of the respective node. As a result, the 

combined effect of intraspecific variability and measurement error again be described by a 

normal distribution, which has a mean equal to the true mean of the feature value of the node 

and a variance that equals the sum of the variances of the two source of phenotypic 

variability. We will refer to these combined variances 𝑏𝑖𝑖  as phenotypic variances. It is worth 

noting that as we assume that the observations on a given node are independent, phenotypic 

correlations are all zero (cf. 5). The square root of the phenotypic variance may also be 

interpreted as the standard deviation expected for multiple samples taken from a single 

species, which thus is taken to be the same for all species (cf. 6). 

Complete model 

This completes the information needed for the model specification. We now combine all 

observations in a single vector 𝐲 =  𝐲1
𝑇 ,… , 𝐲𝑁

𝑇 𝑇, noting that observations on a single feature 

thus remain contiguous. The likelihood of this set of observations equals a multivariate 

normal distribution that combines phylogenetic and phenotypic components. 

The phylogenetic model specifies that the expected feature value of any node equals the value 

of the corresponding feature for the root node, while the phenotypic model does not affect the 

observed mean. Thus the expectation of the distribution equals 𝐲 =  𝐲 1
𝑇 ,… , 𝐲 𝑁

𝑇 𝑇, with each 𝐲 𝑖  

denoting a vector of length 𝐾𝑖  and elements equal to 𝑥𝑖 ,0. 

Since the effect of both phylogenetic and phenotypic processes can be described by a normal 

distribution and the phenotypic process has a zero mean, the chaining of these processes 

simply results in addition of the corresponding covariances (4-6,10). The base covariance 
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between two observations is specified by the phylogenetic model, and incorporates a 

phenotypic component only if the two observations are in fact the same (i.e., only variances 

incorporate a phenotypic component), as phenotypic correlations equal zero. The covariance 

between observation 𝑝 ∈  1,… ,𝐾𝑖  on feature 𝑖 and observation 𝑞 ∈  1,… ,𝐾𝑗   on feature 𝑗 

thus is given by Cov 𝑦𝑖𝑝 ,𝑦𝑗𝑞  = 𝑎𝑖𝑗𝑇𝑚 𝑖𝑝 ,𝑚 𝑗𝑞
+ 𝛿𝑖𝑗𝛿𝑝𝑞𝑏𝑖𝑗 , with each 𝛿 representing the 

Kronecker delta that equals 1 if its subscript indices are equal and 0 otherwise. Thus the 

covariance matrix may be viewed as a 𝑁 × 𝑁 block matrix, with each feature-specific block 

𝐒𝑖𝑗  representing a 𝐾𝑖 × 𝐾𝑗  matrix containing elements Cov 𝑦𝑖𝑝 ,𝑦𝑗𝑞   with 𝑝 ∈  1,… ,𝐾𝑖 ,𝑞 ∈

 1,… ,𝐾𝑗  . As 𝐚, 𝐛 and 𝐓 are all symmetric, it is not difficult to see that the resulting 

covariance matrix must be symmetric as well. 

One could now maximize the likelihood in order to obtain the phylogenetic covariances 𝑎𝑖𝑗  

and phenotypic variances 𝑏𝑖𝑖 , for 𝑖, 𝑗 = 1,… ,𝑁. However, the likelihood also contains the 𝑁 

unknown feature values of the root node 𝑥𝑖0, which then would have to be estimated as well. 

This is possible and would not necessarily increase the number of free parameters, as one 

could “profile out” the root feature values by inserting their (analytically obtained) optimum 

values for any given estimate set of phylogenetic covariances and phenotypic variances. 

However, such joint estimation of the mean and covariance is well-known to induce a bias in 

the estimate of the covariances (18); in order to obtain an unbiased maximum likelihood 

estimator, we first rephrase the model in terms that do not include the root feature values. 

Introducing contrasts 

Following Felsenstein (1,3,5), we first rephrase the model in terms of contrasts: the difference 

between two observations on the same feature. Notably, however, we use contrasts with an 

arbitrarily chosen reference observation, rather than independent contrasts. We set aside one 

observation for each feature for use as reference: from each observation vector 𝐲𝑖  we extract 

one element denoted as 𝑦𝑖0, reducing the vector length with 1; correspondingly we extract 

element 𝑚𝑖0 from 𝐦𝑖 . Any element in the observation vector may be chosen as reference, 

which agrees with the fact the ordering of observations in 𝐲𝑖  is irrelevant. We now define the 

contrast vector 𝚫𝐲𝑖 = 𝐲𝑖 − 𝑦𝑖0 for each feature. The likelihood of observing contrasts 

𝚫𝐲 =  𝚫𝐲1
𝑇 ,… ,𝚫𝐲𝑁

𝑇 𝑇 again equals a multivariate normal distribution (19). The mean of this 

distribution is a null vector, as the expectation for each 𝑦𝑖𝑝  is the root feature value 𝑥𝑖0. The 

covariances of the contrasts can be derived from the covariances of 𝐲𝑖  in a straightforward 

fashion: 

Cov 𝑦𝑖𝑝 − 𝑦𝑖0,𝑦𝑗𝑞 − 𝑦𝑗0 = 𝔼  𝑦𝑖𝑝 − 𝑦𝑖0  𝑦𝑗𝑞 − 𝑦𝑗0  − 𝔼 𝑦𝑖𝑝 − 𝑦𝑖0 𝔼 𝑦𝑗𝑞 − 𝑦𝑗0  

= 𝔼 𝑦𝑖𝑝𝑦𝑗𝑞  − 𝔼 𝑦𝑖𝑝𝑦𝑗0 − 𝔼 𝑦𝑖0𝑦𝑗𝑞  + 𝔼 𝑦𝑖0𝑦𝑗0 

− 𝔼 𝑦𝑖𝑝 𝔼 𝑦𝑗𝑞  + 𝔼 𝑦𝑖𝑝 𝔼 𝑦𝑗0 + 𝔼 𝑦𝑖0 𝔼 𝑦𝑗𝑞  − 𝔼 𝑦𝑖0 𝔼 𝑦𝑗0  

=  Cov 𝑦𝑖𝑝 ,𝑦𝑗𝑞  − Cov 𝑦𝑖𝑝 ,𝑦𝑗0 − Cov 𝑦𝑖0,𝑦𝑗𝑞  + Cov 𝑦𝑖0,𝑦𝑗0  

Inserting Cov 𝑦𝑖𝑝 ,𝑦𝑗𝑞  = 𝑎𝑖𝑗𝑇𝑚 𝑖𝑝 ,𝑚 𝑗𝑞
+ 𝛿𝑖𝑗𝛿𝑝𝑞𝑏𝑖𝑗  that was obtained previously, we get 

Cov 𝑦𝑖𝑝 − 𝑦𝑖0,𝑦𝑗𝑞 − 𝑦𝑗0 = 𝑎𝑖𝑗  𝑇𝑚 𝑖𝑝𝑚 𝑗𝑞
− 𝑇𝑚 𝑖𝑝𝑚 𝑗0

− 𝑇𝑚 𝑖0𝑚 𝑗𝑞
+ 𝑇𝑚 𝑖0𝑚 𝑗0

 + 𝛿𝑖𝑗  1 + 𝛿𝑝𝑞  𝑏𝑖𝑗  
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Thus the covariance matrix for 𝚫𝐲 may be viewed as a 𝑁 × 𝑁 block matrix, with each 

feature-specific block 𝐒𝑖𝑗  representing a 𝐾𝑖 × 𝐾𝑗  matrix containing elements Cov 𝑦𝑖𝑝 −

𝑦𝑖0,𝑦𝑗𝑞−𝑦𝑗0 with 𝑝∈1,…,𝐾𝑖,𝑞∈1,…,𝐾𝑗. It is worth remarking that the phenotypic variances 

contribute first to the block diagonal (due to the use of an observed feature value as reference 

in the contrasts), and again to the element diagonal (due to the individual observations). 

The likelihood of observing contrasts 𝚫𝐲 thus equals 

𝐿 𝚫𝐲 𝐚,𝐛 =
1

 2𝜋 𝑛 2  𝚺 𝐚,𝐛  1 2 
𝑒−

1
2
𝚫𝐲𝑇  𝚺 𝐚,𝐛  −1𝚫𝐲 

with 𝚺 𝐚,𝐛  denoting the covariance matrix and   𝚺 𝐚,𝐛   its determinant. 

Estimating phylogenetic and phenotypic covariances 

We now have an expression for the likelihood that depends only on the phylogenetic and 

phenotypic covariances. For optimization purposes it is often easier to work with the ln-

likelihood, i.e., 

Λ 𝚫𝐲 𝐚,𝐛 = −
1

2
𝑛 ln 2𝜋 −

1

2
ln 𝚺 𝐚,𝐛  −

1

2
𝚫𝐲𝑇 𝚺 𝐚,𝐛  −1𝚫𝐲 

The best estimates for 𝐚 and 𝐛 are given by those values that maximize the (ln-)likelihood. 

Note that  the constant −1

2
𝑛 ln 2𝜋 does not affect the position of the optimum of Λ 𝚫𝐲 𝐚,𝐛  in 

parameter space, and can therefore be omitted. 

To permit unconstrained maximization of the ln-likelihood, it is first rephrased in terms of the 

log Cholesky parameterization (20) of the phylogenetic covariances, and the logarithm of the 

phenotypic variances. This permits unconstrained optimization while ensuring that the 

phylogenetic covariance matrix remains positive definite, and phenotypic variances remain 

positive. The Broyden-Fletcher-Goldfarb-Shanno algorithm (21) is then used for 

unconstrained minimization of the negative ln-likelihood. 

The inverse and determinant of the covariance matrix 𝚺 𝐚,𝐛  at each evaluation of the 

likelihood is calculated through Cholesky decomposition of the matrix. This is the most 

computationally expensive step in the procedure, since the size of the (square) matrix equals 

the total number of feature value observations, which may be very large (289 in the PhyloPars 

test case). 

The likelihood maximization procedure must be provided with an initial estimate of 

phylogenetic covariances and phenotypic variances. To obtain such an estimate, we first 

calculate the optimal phylogenetic variances for each feature in the absence of phylogenetic 

correlations and phenotypic variability. In the absence of phylogenetic correlations, 

observations on different features are uncorrelated and the likelihood reduces to the product of 

feature-specific multivariate normal distributions. Each of these distributions has a zero mean 

and a covariance matrix 𝐒 𝑖𝑖  that depends only on the feature’s phylogenetic and phenotypic 
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variance; these components of the likelihood can therefore be maximized individually. If we 

neglect the  phenotypic component, the feature-specific covariance matrix can be written as 

𝐒 𝑖𝑖  = 𝑎 𝑖𝑖𝐓𝑖    with  𝑇𝑖 ,𝑝𝑞 = 𝑇𝑚 𝑖𝑝𝑚 𝑖𝑞
− 𝑇𝑚 𝑖𝑝𝑚 𝑖0

− 𝑇𝑚 𝑖0𝑚 𝑖𝑞
+ 𝑇𝑚 𝑖0𝑚 𝑖0

 ∀ 𝑝, 𝑞 ∈  1,… ,𝐾𝑖  

The optimal 𝑎 𝑖𝑖  then is the one that maximizes 

−
1

2
ln 𝑎 𝑖𝑖𝐓𝑖 −

1

2
𝚫𝐲𝑖

𝑇 𝑎 𝑖𝑖𝐓𝑖 
−1𝚫𝐲𝑖  

which is found to equal 

𝑎 𝑖𝑖 =
𝚫𝐲𝑖

𝑇𝐓𝑖
−1𝚫𝐲𝑖

𝐾𝑖
 

recalling that 𝐾𝑖  denotes the length of 𝚫𝐲𝑖 . Further, we calculate the optimal phenotypic 

variances in the absence of phylogenetic variability. This is simply the variance of the 

observations for each feature, i.e., 𝑏 𝑖𝑖 = var 𝐲𝑖 , with 𝐲𝑖  taken before reference element 𝑦𝑖0 

was extracted. As initial guess, we specify that half of the total variability is due to 

phylogenetic components, and half to phenotypic components. Initial estimates of 

phylogenetic and phenotypic variances are thus set to 1

2
𝑎 𝑖𝑖  and 1

2
𝑏 𝑖𝑖 , respectively (recall that 

phylogenetic correlations are initially set to zero). 

Reconstructing missing feature values 

With phylogenetic covariances and phenotypic variances known, the mean values for all 

features of all nodes can be reconstructed. The values to estimate are denoted by vector 𝐲∗, 

consisting of 𝑁 feature-specific stacked vectors 𝐲𝑖
∗ of length 𝑀 (one element per node). 

Again, contrasts are taken with the previously selected reference observations: 𝚫𝐲𝑖
∗ =  𝐲𝑖

∗ −

𝑦𝑖0. These are combined in a single contrast vector 𝚫𝐲∗ =  𝚫𝐲1
∗𝑇 ,… ,𝚫𝐲𝑁

∗𝑇 𝑇 . 

The desired feature values 𝐲∗ can be estimated by finding the contrasts 𝚫𝐲∗ that maximize the 

likelihood, given the observed contrasts 𝚫𝐲, as well as the previously estimated phylogenetic 

covariances 𝐚 and phenotypic variances 𝐛. This likelihood is described by a multivariate 

normal distribution of the combined contrasts 𝚫𝐲    =  𝚫𝐲∗𝑇 ,𝚫𝐲𝑇 𝑇. As before, the mean of 

this distribution equals zero, since the expectation of the two terms in any contrast is identical 

(namely, the corresponding feature value of the root node). The covariance matrix of the 

distribution can be partitioned as 

𝚺 =  𝚺
∗ 𝚺×

𝚺×𝑇 𝚺
  

The lower right block describes the covariances between observed contrasts, and thus equals 

the covariance matrix 𝚺 that was derived previously. The upper left block 𝚺∗ describes the 

covariances between the desired contrasts: 

Cov y𝑖𝑝
∗ − 𝑦𝑖0, y𝑗𝑞

∗ − 𝑦𝑗0 = 𝑎𝑖𝑗  𝑇𝑝𝑞 − 𝑇𝑝𝑚 𝑗0
− 𝑇𝑚 𝑖0𝑞

+ 𝑇𝑚 𝑖0𝑚 𝑗0
 + 𝛿𝑖𝑗𝑏𝑖𝑗  
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with 𝑝, 𝑞 ∈  1,… ,𝑀 . It may be noted that phenotypic variability contributes at most once to 

the covariance: when both reference observations (𝑦𝑖0, 𝑦𝑗0) are equal. It does not additionally 

contribute to the variance (diagonal elements of 𝚺∗) if y𝑖𝑝
∗  and y𝑗𝑞

∗  are equal, as desired feature 

values (y𝑖𝑝
∗ , y𝑗𝑞

∗ ) pertain to the nodes (the species mean), rather than to the individual samples; 

therefore they are not subject to phenotypic variability. 

The off-diagonal block 𝚺× and its transpose 𝚺×𝑇 describe covariances between elements of 

𝚫𝐲∗ and elements of 𝚫𝐲: 

Cov y𝑖𝑝
∗ − 𝑦𝑖0, y𝑗𝑞 − 𝑦𝑗0 = 𝑎𝑖𝑗  𝑇𝑝𝑚 𝑗𝑞

− 𝑇𝑝𝑚 𝑗0
− 𝑇𝑚 𝑖0𝑚 𝑗𝑞

+ 𝑇𝑚 𝑖0𝑚 𝑗0
 + 𝛿𝑖𝑗𝑏𝑖𝑗  

with 𝑝 ∈  1,… ,𝑀 , 𝑞 ∈  1,… ,𝐾𝑗  . Since these covariances describe off-diagonal elements of 

the combined covariance matrix 𝚺  only, phenotypic variances contribute at most once to the 

covariance (when reference observations 𝑦𝑖0 and 𝑦𝑗0 are equal). 

To obtain estimates for 𝚫𝐲∗, the likelihood can be rephrased as the distribution of 𝚫𝐲∗ 

conditional on 𝚫𝐲. This distribution is again multivariate normal with mean 𝚺×𝚺−1𝚫𝐲 and 

covariance matrix  𝚺∗ − 𝚺×𝚺−1𝚺×𝑇 (19). These directly specify estimates of the desired 

contrasts, and their covariances. From the estimates of the contrasts the estimates for the 

missing feature values are easily derived by taking for each feature the sum of the estimated 

contrast vector and the original reference value: 𝐲𝑖
∗ = 𝚫𝐲𝑖

∗ + 𝑦𝑖0. The variance of the 

estimates is directly equal to the diagonal of the contrast covariance matrix 𝚺∗ − 𝚺×𝚺−1𝚺×𝑇, 

as the reference observations act as constants in this context. 
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